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The approximate method of [6] is further developed for the example of a tempera- 
ture field of a plate with a given surface temperature. The error of the solu- 
tions obtained is estimated and the possibility of measuring nonstatlonary heat 
fluxes is shown. 

Statement of the Problem. Approximate mathematical methods are widely used in the an- 
alytic theory of heat conduction. Analysis of the solutions shows that they are of asymptot- 
ic nature and are appropriate either for short or for long moments of time, while a defi- 
nite limit of their applicability is not indicated [1-5]. The latter circumstance renders the 
use of these results rather difficult, and leads to the necessity of searching other approx- 
imate methods free of this drawback [6]. Below we develop further the method suggested in 
[6] for the example of a nonstationary temperature field of a plate with boundary conditions 
of the first kind, while the surface temperatures can be arbitrary functions of time. 

The practical application of the problem under consideration is related to measurement 
of nonstationary heat fluxes. 

The temperature field of the plate is described by the heat-conduction equation 

~-0 _ O0 (_ l ~ x ~  I, F o ~ O ~  (1)  
072 O Fo 

w i t h  t he  f o l l o w i n g  boundary  c o n d i t i o n s :  

0 (-- l, Vo) = O, (Vo), (2) 

O (1, F~ = 02 (F~, (3) 

o ~ ,  o) = o. (4) 

For convenience, problem (1)-(4) is written in terms of the excess heat O(~ ,  Fo) = t(~, 
Fo) --to, and the thermophysical properties are assumed to be constant. The solution of (i)- 
(4) is obtained in several stages. 

Initially we study heat-exchange processes for a symmetric plate field with constant 
surface temperatures. A practically isothermal region with temperature to, on which there 
is no heat-exchange effect at the boundary, is retained at the center of the plate for some 
initial process duration (Fig. i). The temperature drop occurs at the portion L-- 6~.< x~.L, 
called the nonisothermal region. In terms of some time z, the depth of the nonlsothermal re- 
gion 6 becomes equal to the plate half width. The temperature field is further varied toward 
the stationary state. According to [6], the whole process can evolve in time in two stages. 
The first is characterized by the presence of an isothermal region in the plate and reflects 
the half-space model in its physical meaning, and the second is characterized by a tempera- 
ture variation toward the stationary state. The physical meaning of the latter stage is con- 
sidered below. 

First Stase of the Process (0 < Fo~_Fo,). At this stage we approximate the plate tem T 
perature field in the nonisothermal region by an n-th order parabola [6]~ Taking into account 
the boundary conditions, we obtain 

o (x, Fo> = {~176 1 \ )'~, 1 - - A ~ x ~  1, 
A . 

O, O ~ x ~  1 --A. 
(5) 
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Fig. i. The time history 
(x, < x2 = r, < T, ) of the 
plate temperature field. 

Introducing the unit function [8] 

1, z > 0  
U(z) = 1/2, z = 0 ,  

[0, z <  0 

expression (5) can be represented more conveniently 

OI(X, Fo): U(x--I + A )  On(1 l - - x )  n A  " (6) 

The q u a n t i t y  6 a p p e a r i n g  i n  (6) depends  on Fo,  and,  as  shown i n  [6] t can be  o b t a i n e d  by 
a n a l y z i n g  t h e  h e a t  b a l a n c e  i n  t h e  norLtso the rmal  r e g i o n .  We b r i e f l y  c o n s i d e r  methods  o f  de -  
terminJaxg 6.  The a c c u m u l a t e d  h e a t  i s  d e t e r m i n e d  by t h e  e q u a t i o n  

Its change during time dr 

L 

__ - 1 [ 
Q = ~ F6~st , t~st = - ~ -  ) ~dx. 

/---6 

dQ = - - -  ~" - - F t ~ "  d6 
a n + l  

equals the amount of heat withdrawn through the plate surface according to Fourier's law 

( ~ ) Fd't=)~n On Fd'~" 

Equating the right-hand sides of the latter equalities and solving the differential 
equation obtained, we find the functio n ~(r), written in dimensionless form 

A = V" 2n (n + 1) Fo .  (7) 

The first stage is concluded when 6 = L, i.e., A = i. The boundary of this stage can 
then be found from (7) 

F o , =  a~, _ 1 (8) 
L z 2n (n -+- 1) 

To complete the solution at the first stage, it remains to determine the parabola index 
n. We require that (6) best satisfy Eq. (1) in the nonisothermal region. This reduces to 
the condition [5] 
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�9 g V o  = o .  
1--~. 

Performing the integration, we obtain the quadratic equation 

2n 2 - 3 n - 1  = 0 ,  

whose positive root is n = 1.78. The boundary of this stage Fo, = 0.I0 can be found from 
(8). 

Consider a nonsymmetrlc plate field at constant surface temperatures ~(--I, Fo) = ~ x, 
~(i, Fo) --0 2. It has been earlier established that the depth of the nonisothermal region 
is independent of the absolute temperature values, therefore at the moment Fo, = 0.i0 the 
peaks of the two parabolas coincide at the central point. At the first stage this makes it 
possible to consider the plate as a set of two half plates, in each of which the temperature 
field can be described by a function of type (6). Matching the separate expressions, we 
write the final result 

~, (x-, Fo) = u (~-- 1 + A) o~ (1 ( A + U ( A - -  l - - x ) O ,  1 ] A+x )~ . (9) 

At the final moment of the first stage 

~, (x_ Fo,) = u(~)o~x~ + U ( - x ) o , ( - x )  -. 

Second Stage of the Process (Fo, ~ Fo < | We seek the temperature field of the plate, 
starting from the continuity of the solution in passing from the first to the second stage, 
which allows one to construct the following dependence 

~,, (x, Fo) = @st (x) - -  [@st (~ - -  ~, (x, Fo,)] q~ (Fo - -  Fo,), (10) 

where @st(X) is the stationary solution of the problem under consideration 

~ s t ~ ) =  ~2--~,  x +  ~' + ~ ; 
2 2 

and~ (Fo -- Fo,) is a function on which the condltions~ (0) = i, ~ (=) = 0 are imposed by phys- 
ical considerations. 

The shape of this function can be found by various arguments. Using, e.g., local poten- 
tial theory [5], the following expression for q can be obtained 

(Fo - -  Fo,) = exp [-- ~ (Fo - -  Fo,)]. (ii) 

To d e t e r m i n e  t h e  shape  o f  t h e  f u n c t i o n  ~ one  can draw upon t h e  t h e o r y  o f  t h e  r e g u l a r  
regime, as it follows from physical considerations that in the second stage of the process 
the temperature field is self-similar in time, i.e . , it changes similarly to itself. 

It is well known [3, 7] that at the regular stage of heat exchange the temperature field 
is approximately described by the function 

2 
Op G, Fo) =- Ost (x) - -  A,f,(x) exp ( - -  ~,Fo), (12) 

where  f x ( x )  and Ax a r e  t h e  f i r s t  e i g e n f t m c t i o n  o f  t h e  p ro b l em  and a c o e f f i c i e n t  a p p e a r i n g  i n  
i t  i n  t h e  e x a c t  s o l u t i o n ,  and ~t i s  t h e  f i r s t  e i g e n v a l u e .  

We r e q u i r e  t h a t  a t  t h e  moment F o ,  e x p r e s s i o n  (12) s a t i s f y  t h e  c o n d i t i o n  

"0'p (X, FO,) ~-- '~I ('X, Fo,) .  

Hence 

and (12) is finally transformed to the form 

@p (~, Fo) = @= (x) -- [@st (x) -- ~ (x_ Fo.)] exp [-- ~ (Fo -- Fo.)], 

which fully coincides with (i0), (ll), with ~ = B~. It is well known that the first elgen- 
value for the plate equals ~/2, while g = (~/2) z [l, 3]. 
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Generalizing the results obtained, we write down the calculating equation for the plate 
temperature field for constant surface temperatures in the time interval 0 < Fo < 

(x~ Vo) =-: U (Fo. - -  Vo) ~, (x, Fo) -+ U (Fo --  Fo.) ~1i (x, Fo). (13) 

Varying Boundary Conditions. The solution of the original problem (i)-(4) can be ob- 
tained from (13) by means of Duhamel's theorem [I] 

Fo 

~ ( ~  F o ) -  0 {U(Fo,- -  F o - - F o ' ) ~ i ( x ,  Fo--  Fo', Fo') " U(Fo- -  Fo ' - -Fo , )~n  (x, Fo- -Fo ' ,  Fo')}dFo'. 
0 Fo . 

0 

It can be shown that for the first stage (0 < Fo ~ Fo,) the given expression transforms 
to 

Fo 

Ot (x, Fo) -- 0 0 Fo j '  @I (x, Fo -- Fo', Fo') d Fo', (14) 

0 

while for the second stage (Fo, ~ Fo < =) 

Fo 
. + -  

'1~II (X, F o )  - -  0 ~I (X, Fo -- Fo', Fo') d Fo' q- 
O Fo o 

Fo--Fo, 

We apply the Leibnitz rule [8] to (14), (15). Finally, 
Fo 

OI (x' F~ = i {U[A (F~ F~ --  1 -- x] @t(F~ [1 - -  A (Fol-Fx-- F o r )  ]n--I 

0 

;< (l -F x) -F U [x - -  I + A ( F o - - F o ' ) l t ~ ( F o ' )  1 A ( F o Z F o )  

nl/n(n+l) dFo' 
X ( l - x )  A 2 ( F o _ F o , ) I / 2 ( F o _ F o , )  ; 

Fo 

~n(x, Vo)= Jv {U [a (Fo -- Fo') -- I -xI . , (Fo ' ) [ I - -  
F o, 

n--I 
l + x  , (1 -F x) -k- U Ix--  1 + A (Fo -- Fo')] ~ (Fo') x 

a (v~-- Fo ) 
1 - - x  " ]n-t  nV-n (n .q -  1)dFo' 

• ( l - x ) }  Fo') 
Fo--Fo. 

j{ _ P+ 02 (Fo') - -  O, (Fo') x + t$, (Fo') 4- 02 (Fo') 
2 2 

0 

Fo--Fo. 

0 

(15) 

(16) 

(17) 

-. U (x) ~z (Fo') x ~ - -  U (-- x) ~ (Fo')(--X)~ / exp [-- p+ (Fo - -  Fo' - -  Fo,)] d Fo'. 

The application of Duhamel's theorem in the sense of integral convergence and differen- 
tiation with respect to parameters is justified, since the integrand functions in (14) and 
(15) are piecewise continuous and increase with time not faster than exponentially (these 
requirements are imposed on a class of functions to which the Laplace transform, and, conse- 
quently, Duhamel's theorem as well, are applicable). 

The dependencies obtained can be used to calculate the heat flux in experimental mea- 
surements of the plate surface temperature. According to Fourler's law 

q (Fo) -- L Ox - I  
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Fig. 2. Error analysis in determining the temperature field of a plate, s, %. 

Fig. 3. Comparison of exact and approximate solutions for harmonic variation of the 
surface temperature. 

the thermal flux penetrating the plate through the left surface can be found. At the first 
stage 

Fo O,,Fo> } 
L ! F--o 2 " (Fo - -  Fo') s/~ d Fo' , ( 1 8 )  

while at the second stage 

q~1 ( F o )  = 

Fo 
3,n]/-F--%, {t~,(Fo) . 1 ~ ~ , ( F o ' ) - - ~ , ( F o )  

L 1 / ' ~ ,  2 (Fo -- Fo') a' 2 
Fo--Fo, 

Fo--Fo. 

~' (n  1 .i {+~ 
0 

exp [-- ~ (Fo -- Fo' -- Fo.)] d Fo'. 

d Fo'} -- 

Error Analysis. 
proximate equations (9)-(11) by comparing them with the well-known exact solution [i]. 
magnitude is defined as 

(x, F o ) =  ~'(x '  F o )  -~,~(~ Fo) . 100%. 
e T  max (FO) 

(:9) 

We estimate the error in calculating the temperature field by the ap- 
Its 

(20)  

Results of these calculations are shown in Fig. 2, from which it is seen that the maxi- 
mum error does not exceed 5%, which is reached in the transition region from one region to 
the other. At the second stage the error decreases quickly and for Fo = 0.3 it consists of 
fractions of a percent. 

To estimate the possibility of using Eqs. (16), (17), and temperature fields of the 
plate were calculated for the linear and harmonic variation laws of the surface temperature, 
while for simplicity the value n = 2 was chosen. 

For the linear law t (Fo) -- to = bFo the solution in the regular stage is 
P 

, I 1 (I --. x--) ~. (21) /p(Vo)-- / (x- ,  Fo) _ l--x 2 + : ( i - - x ) :  (l - -  x)"-ln (1- -  ~) -- ~ -  
b ~t 3 

Its error, defined as the ratio of the difference between the exact and approximate so- 
lutions to the maximum temperature drop in the plate, does not exceed 2.5%. 

For the harmonic law tp(FO) = sin (kFo) (k = 75 was taken in the calculations) the ex- 

act (continuous line) and approximate (dashed) solutions are shown in Fig. 3. 
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Consider the error in determining thermal fluxes. As already noted earlier, the first 
stage corresponds in its physical meaning to the halfspace model. Equation (18) must coincide 
with the half-space equation which follows from the exact solution and is of the form [9] 

Fo 

qm(FO) - -  L ] / . T  t ]/F-o 2 (Fo - -  Fo ' )  3/2 dFo '  . (22)  
0 

Comparing (18) with (22), we see that they differ only in their coefficients, while the 
deviation is -0.25%. 

To obtain more complete estimates of the error of an approximate solution, it is neces- 
sary to compare it with exact solutions for various durations and frequencies of the heat 
flux. 

NOTATION 

2L and F, thickness and area of the plate surface; ~ .and a, thermal conductivity and 
thermal diffusivity of the material; to, initial temperature; tp, surface temperature of a 
plate with symmetric heat exchange; tl and t~,__temperatures of the left and right surfaces 
of a plate with nonsymmetric heat exchange; O(x, Fo), ~(x, Fo), excess hearings of a plate 
under constant boundary conditions for symmetric and nonsymmetric heat exchange; x = • and A = ~/L, 
relative coordinate and depth of a nonisothermal region; Fo = aT/L 2, Fourier number;'~, time; and 
~t(~, Fo),0 t max (F~ exact current and maximum value of excess heating. 
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